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Mathematics and Music seem nowadays independent areas of knowledge. Nevertheless, strong connections exist
between them since ancient times. Twentieth-century music is no exception, since in many aspects it admits an
obvious mathematical formalization.

In this article some twelve-tone music rules, as created by Schoenberg, are presented and translated into math-
ematics. The representation obtained is used as a tool in the analysis of some compositions by Schoenberg, Berg,
Webern (the Second Viennese School) and also by Milton Babbitt (a contemporary composer born in 1916).

The Second Viennese School of Music

The 12-tone music was condemned by the Nazis (and forbidden in the occupied Europe) because
its author was a Jew; by the Stalinists for having a bourgeois cosmopolitan formalism; by the
public for being different from everything else.

Roland de Candé [2]

Arnold Schoenberg (1874-1951) was born in Vienna, in a Jewish family. He lived several years in
Vienna and in Berlin. In 1933, forced to leave the Academy of Arts of Berlin, he moved to Paris and short
after to the United States. He lived in Los Angeles from 1934 until the end of his life.

In 1923 Schoenberg presented the twelve-tone music together with a new composition method, also
adopted by Alban Berg (1885-1935) and Anton Webern (1883-1945), his students since 1904.

The three composers were so closely associated that they became known as the Second Viennese School
of Music.

The Twelve-Tone Method

Tonality consists of the relations, melodic and harmonic, between the several notes of a given scale. In
tonal music, the most important note is the so called tonic: around the tonic gravitates both melody and
harmony.

Schoenberg wanted to remove the prevailing role of the tonic, as well as the hierarchy that tonality
imposes between the seven notes of the traditional scale. With this idea in mind, in 1923 he established
the Twelve-Tone Method. This method proposes to give the same merit to each note of the chromatic
scale; in a 12-tone composition, all chromatic notes appear exactly the same number of times. The basis
for a 12-tone composition is a sequence of the 12 distinct music pitches (without repetitions), appearing
in any octave and combined under any rhythm. This sequence is called 12-tone series or 12-tone row.

The basis of each composition is one single series; only this basic series or some others related with this
one by symmetry can be used in the composition. The composer can use the series in its original form,
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or with its intervals inverted, or backwards (retrograde), or transposed by some half-tones. Imposing as a
rule that no series can start before the previous one is finished, at the end of the composition all 12 notes
have in fact appeared the same amount of times.

The first series of History of Music is the one used in the fifth piece of Five Piano Pieces, Opus 23,
from Schoenberg, written in 1923: C], A, B, G, A[, G[, Si[, D, E, E[, C, F.

Mathematical Formalization of Twelve-tone Music

People accuse me of being a mathematician, but I am not a mathematician, I am a geometer.

Arnold Schoenberg

In this section we use numbers to represent musical notes. Recall that in a 12-tone row, notes with
the same name are considered equivalent, even if they belong to different octaves. We start by identifying
consecutive notes with consecutive integers. In this way, if C is represented by the integer 1, then C] is
represented by 2, B by 12 and the following C has to be again represented by 1. The difference between two
integers representing two notes gives the number of half-steps of the interval between the two corresponding
notes (ignoring octaves). For instance, C and G can be represented by 1 and 8, respectively, and they
define an interval of a perfect fifth, or 7 half-tones (or an interval of 7+12 half-tones, or 7+12k half-tones,
for some integer k).

Given an integer p, define the set [p] = {p+k×12, for some integer k}. Notice that [1] = [49] = [−11],
as well as [5] = [29] = [−7]. The set ZZ12 = {[0], [1], [2], . . . , [11]} is called set of integers modulo 12 and
the set [p] is called equivalence class of p modulo 12. Addition in ZZ12 (addition modulo 12) is defined as
the usual addition in ZZ, having into account that numbers differing by a multiple of 12 are equivalent.
For instance, we have (3 + 8)mod12 = 11, (5 + 7)mod12 = 0 and (7 + 7)mod12 = 2. Using the equivalence
between numbers differing by a multiple of 12, we define symmetric of an integer modulo 12 obtaining, for
instance, (−5)mod12 = 7, (0)mod12 = 0, (−11)mod12 = 1.

We may now define 12-tone series as a permutation of the integers 0, 1, 2, . . . , 11, recalling that each
integer has to be seen as an equivalence class modulo 12.

Example 1
In Schoenberg’s Piano Concerto, Opus 42 (1942), the basic row is

E[, B[, D, F, E, C, F], A[, D[, A, B, G.

Considering E[ ≡ 0, E ≡ 1, and so forth, this series, which we represent by S, can be re-written as

S = (0, 7, 11, 2, 1, 9, 3, 5, 10, 6, 8, 4). (1)

Series related to a given series

In order to collect all material to be used in a musical composition, after choosing the basic series (or
basic row), it is necessary to list all series which can be obtained by symmetry from the basic one.

Suppose that the basic row is defined by

P = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) (2)
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The retrograde row, which we represent by R(P ), is obtained from P playing it backwards

R(P ) = (a12, a11, a10, a9, a8, a7, a6, a5, a4, a3, a2, a1) (3)

The inverse row, which we represent by I(P ), is obtained from the basic row P maintaining its first note
and inverting all intervals between consecutive notes, in such a way that an ascending interval becomes
descendent and vice-versa.

Denoting the entries of I(P ) by a∗k, k = 1, . . . , 12, they verify the following

a∗1 = a1

a∗2 = a∗1 − (a2 − a1)
a∗3 = a∗2 − (a3 − a2)

...
a∗12 = a∗11 − (a12 − a11)

If a1 = 0 in the basic row, then the inverse row I(P ) takes the form

I(P ) = ((−a1)mod12, . . . , (−a12)mod12), (4)

that is, the inverse series I(P ) of P is represented by the substitution of each entry of the series by its
symmetric with respect to addition in ZZ12 (property only valid if we associate to the first note of the
basic series the number 0).

The retrograde inverse row, which we represent by RI(P ), is obtained from P by applying the previous
two operations. In case a1 = 0 in P , the row RI(P ) is

RI(P ) = ((−a12)mod12, . . . , (−a1)mod12). (5)

Any transposition by k half-tones of the basic row is obtained from P by adding k (modulo 12) to each
entry of P . The transposition of P by k half-tones is

Pk = ((a1 + k)mod12, ..., (a12 + k)mod12) (6)

In a similar way we obtain the transpositions by k half-tones of the retrograde row, the inverse row
and the retrograde inverse row.

The Matrix of Series

The rows related with the basic row P can be organized in one matrix M(P ), as follows.
Let P be the series

P = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12)

with a1 = 0.
Let M(P ) be the 12× 12 matrix obtained in the following way: the 1st row of M(P ) is the basic series

P ; the 1st column of M(P ) is the inverse series I(P ); since a1 = 0, the entries of the 1st column are given
by (4). The remaining rows are transpositions of P , being that transposition by k half-tones (Pk) if k
is the 1st entry of the row. In the same way, the remaining columns are transpositions by k half-tones
of the inverse row (Ik) (where k is the 1st entry of the column), the 1st row backwards is the retrograde
(R(P )) of the basic row, the 1st columm up side down is the retrograde inverse (RI(P )), the remaining
rows backwards are transpositions of the retrograde row (Rk) and the remaining columns up side down
are the transposition of the retrograde inverse (RIk).

The series related with the basic series are at most 48, being less than 48 if there are some symmetries
in the basic series, as we shall see.
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Example 2
The matrix of series for the Schoenberg’s Piano Concerto, Opus 42 (see Example 1) is as follows.

Figure 1: The 1st row contains the elements a1, . . . , a12; the 1st column contains the elements −a1, . . . , −a12. Since
each row i is obtained from the first row by the addition of −ai (which is the 1st entry of the row i), the element of
the matrix in the position (i, j) (row i, column j) is equal to aj − ai. Obviously, the main diagonal of the matrix
M(S) is composed by zeros.

Hexachords

If we consider a series just a permutation of the 12 integers 0, 1, 2, . . . , 11, then the total number of
possible series is P(12) = 12! = 479.001.600. Of course not all permutations can be used as series, since
composers are certainly interested in series with special musical properties.

Example 3
Consider the row P

P = (0, 2, 7, 5, 10, 9, 3, 4, 11, 1, 8, 6)

Transposing P by 6 half-tones, we obtain

P6 = (6, 8, 1, 11, 4, 3, 9, 10, 5, 7, 2, 0)

The retrograde of P coincides with the transposition of P by 6 half-tones, that is, P6 = R(P ). Obviously
the row P has less than 48 different associated rows.
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Proposition: Let P be a given row. If R(P ) = Pk, then k=6.

Proof
Suppose that the retrograde of the series P

P = (a1, a2, a3, a4, a5, a6, ..., a12)

is equal to

Pk = (a1 + k, a2 + k, a3 + k, . . . , a12 + k),

for some k ∈ {0, 1, 2, . . . , 11}. Then (a1 + k = a12)mod12 and (a12 + k = a1)mod12. From (a1 =
a1 + 2k)mod12 we conclude k = 6.

Quite often, the choice of a particular series such as the one in Example 3 needs the study of some
sub-sets of ZZ12. We give particular attention to hexachords, sub-sets of ZZ12 containing six elements. The
series P defined in (2) can be divided in two hexachords as follows

H1(P ) H2(P )
a1, a2, a3, a4, a5, a6 a7, a8, a9, a10, a11, a12

Notice now that in order to have R(P ) ≡ P6, neither H1(P ) nor H2(P ) can contain two elements of
ZZ12 with a difference (module 12) equal to 6. Furthermore, in order to have R(P ) = P6, H2(P ) has to
be equal to the retrograde of H1(P ), transposed by 6 half-tones.

Proposition: Divide the series P in two hexachords P = (H1(P ),H2(P )).
P verifies the condition R(P ) = P6 if and only if
(a) H1(P ) does not contain any pair of notes differing by 6 half-tones;
(b) H2(P ) = R(H1(P ) + 6).

The amount of series with the property R(P ) = P6 is equal to 12× 10× 8× 6× 4× 2 = 46 080.

Definition: Given two series A and B we say that A and B combine if both first hexachords together
contain all 12 notes, without repetitions.

Let A and B be the series

1st hexachord 2nd hexachord
A H1(A) : a1, a2, a3, a4, a5, a6 H2(A) : a7, a8, a9, a10, a11, a12

B H1(B) : b1, b2, b3, b4, b5, b6 H2(B) : b7, b8, b9, b10, b11, b12

When A and B combine, both sequences (H1(A),H2(B)) and (H1(B),H2(A)) also define series.

Obviously, any row combines with its own retrograde. This trivial property has been cleverly used by
Webern, as shown in Example 4.

Example 4
In Webern’s Piano Variations, Opus 27, the basic row is

P : (0, 1, 9, 11, 8, 10, 4, 5, 6, 2, 3, 7)

with E≡0.
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Figure 2: Webern’s Piano Variations Op. 27.

We separate the row P in two hexachords.

H1(P ) H2(P )
(0, 1, 9, 11, 8, 10) (4, 5, 6, 2, 3, 7)

The right hand starts playing the 1st hexachord of P followed by the 2nd hexachord of the retrograde
R(P ), while the left hand plays the 1st hexachord of R(P ), followed by the 2nd hexachord of P , leading
to the following palindromic structure

right hand: 0 1 9 11 8 10 10 8 11 9 1 0
left hand: 7 3 2 6 5 4 4 5 6 2 3 7

as can easily be seen in Figure 2.

Example 5
In Schoenberg’s Piano Piece, Opus 33a, the basic series is

P = (0, 7, 2, 1, 11, 8, 3, 5, 9, 10, 4, 6)

with B[ ≡ 0.

Figure 3: Schoenberg’s Piano Piece, Op. 33a. When both right and left hands have only played the first hexachord
of the corresponding series, (P0 for the right hand and I5 for the left hand), already both hands together have played
all 12 notes of the chromatic scale.

We notice first that P combines with the transposition by 5 half-tones of its inverse I(P ).
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The first hexachord H1 of the series P is

H1 = (ai)1≤i≤6 = (0, 7, 2, 1, 11, 8);

the inverse of H1 is

I(H1) = (−ai)1≤i≤6 = (0, 5, 10, 11, 1, 4);

the transposition by five half-tones of the inverse of H1 is

I5(H1) = (−ai + 5)1≤i≤6 = (5, 10, 3, 4, 6, 9)

and I5(H1) is indeed a complementary hexachord of H1.

Creating 12-tone music

I can tell you, dearest friend, that if became known how much friendship, love and a world
of human and spiritual references I have smuggled into these movements, the adherents of
programme music (should there be any left) would go mad with joy.

Berg, in a letter to Schoenberg, about the Chamber Concerto, 1925.

In this section we try to show, by means of some musical examples, that despite their seemingly strict
rules, the character of the composer can still be recognized in a 12-tone music composition.

Example 6
The music of Alban Berg is intensely expressive, almost romantic. In fact, Berg was able to compose

12-tone music without being entirely away from tonality. The work of Berg can be seen as a compromise
between traditional principles (tonality) and innovative principles (atonality, 12-tone method), fact that
indeed is quite evident in his Violin Concerto.

In Berg’s Violin Concerto, 1935, the basic row is

P = (0, 3, 7, 11, 2, 5, 9, 1, 4, 6, 8, 10)

with G≡0. Exceptionally, and to make clear the tonal character of this piece, we present this series using
the name of the notes involved.

G minor


A minor




G
B[

D
F]

A
C
E
G]

B
C]

D]

F

 D major

 E major
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The basic row crosses several tonalities: the first three notes define the tonality of G minor, moving
successively to the tonalities of D major, A minor, E major, finishing with four notes presenting a sequence
of three whole tones.

Figure 4: Violin Concerto, Berg, 1935.

Example 7
Anton Webern is, from the Vienna Trio, the one arriving further away from the tonal system. The

compositions by Webern are in general brief and dry, while the traditional melodic line is substituted
by individual notes, with no melodic connection between them, some times even confined to different
instruments, as it is evident in his Concerto for Nine Instruments, Op. 24.

The basic series for this concert was carefully chosen in order to have an internal structure with
interesting symmetries. The basic series is

P = (0, 11, 3; 4, 8, 7; 9, 5, 6; 1, 2, 10),

with B≡0. We consider the first three notes of the series, 0, 11, 3, and deal with this set of notes as a
”mini-row” which we represent by T . We have

T : (0, 11, 3)
I(T ) : (0, 1, 9)
R(T ) : (3, 11, 0)
RI(T ) : (9, 1, 0)

Notice further that
I(T ) + 1 : (1, 2, 10)
R(T ) + 6 : (9, 5, 6)
RI(T ) + 7 : (4, 8, 7)

The basic row P can in fact be completely re-written in terms of the mini-row T , as follows

P = (T,RI7(T ), R6(T ), I1(T )).
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Figure 5: Concerto for Nine Instruments, Op. 24. The series is separated in four small groups of three notes each,
which become even more independent since they are distributed by different instruments and played with different
speed.

Example 8
After Schoenberg, Berg and Webern, other composers have used the idea of a series in musical elements

other than notes. Metric, intensity of sound, rhythm, timbre, among others, have been incorporated into
serial structures. In Example 8, we see how Milton Babbitt (American composer born in 1916) uses the
idea of basic series to also establish the duration and intensity of sound.

Figure 6: Three Compositions for piano, No.1, Babbitt (1947)

The series of notes used in this piece is

P = (0, 5, 7, 4, 2, 3, 9, 1, 8, 11, 10, 6)

with 0 ≡ B[.
The transposed of P by 6 half-tones is

P6 = (6, 11, 1, 10, 8, 9, 3, 7, 2, 5, 4, 0).

Notice that P combines with its transposition P6. On the other hand, the retrograde of P is

R(P ) = (6, 10, 11, 8, 1, 9, 3, 2, 4, 7, 5, 0),

the inverse of P is
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I(P ) = (0, 7, 5, 8, 10, 9, 3, 11, 4, 1, 2, 6)

and the retrograde inverse of P is

RI(P ) = (6, 2, 1, 4, 11, 3, 9, 10, 8, 5, 7, 0),

obtaining

RI1(P ) = (7, 3, 2, 5, 0, 4, 10, 11, 9, 6, 8, 1).

Notice that R(P ) combines with RI1(P ).
The structure of the first four measures is as follows

measure I II III IV

right hand H1(P6) H2(P6) H1(R) H2(R)
left hand H1(P ) H2(P ) H1(RI1) H2(RI1)

Because P combines with P6 and R(P ) combines with RI(P )1, the notes of the two hexachords played
by both left and right hands in each measure are all the 12 notes of the scale.

For the duration of sounds, a sequence of four numbers is used,

D = (5, 1, 4, 2),

with operations modulo 6 (in a similar way as ZZ12, we define the set of integers modulo 6, ZZ6, with
operations defined in such a way that integers differing by a multiple of 6 are equivalent). Each entry of
the series D indicates the quantity of consecutive sixteenths appearing in each group. More exactly, the
fact that the initial entry is equal to 5 indicates that the first five notes of the composition must form a
group of five consecutive and linked sixteenths. Obviously, the addition of all four entries of D is equal to
12, the number of notes of the series.

Notice further that

D : 5, 1, 4, 2
I(D) : 1, 5, 2, 4
R(D) : 2, 4, 1, 5
RI(D) : 4, 2, 5, 1

Any time the row P (or a transposition of P ) is played, the rhythm indicated by D is used; when
the inverse of P (or a transposition of I(P )) is played, the duration of the notes has to respect I(D);
retrogrades are played with rhythm given by R(D), and RI(D) indicates the rhythm of the retrograde
inverse of P (or transpositions of RI(P )).

There is also a correspondence between the form of the series and the intensity of the sound: the row
P (or a transposition of P ) is always played mezzo piano (mp); I(P ) (or a transposition of I(P )) is played
forte (f); retrogrades are played mezzo forte (mf) while RI(D) are played piano (p).

notes rhythm intensity
P D mezzo piano (mp)
R(P ) R(D) mezzo forte (mf)
I(P ) I(D) forte (f)
RI(P ) RI(D) piano (p)
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