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Abstract

A pedagogical project, callethe ARPAM projecthas been founded in an attempt to foster a rapproent between the
general public and the mathematical sciences. iased on the presentation of mathematical con@eptsfacts through
some buildings calletbllies. This paper describes a folly devoted to the tithtfon in the physical world of two important
concepts, those of singularity and bifurcationkdéid through the fundamental concept of stabilitye use of properties of
some fluid flows on certain surfaces is the maiol tehich is used to exhibit these concepts and emttical facts. The
artistic attraction of this folly comes from the ltipie effects of light through the various usestuf fluid elements.

1. Introduction

The ARPAM project, that was briefly described ie iaubeuge Colloguium on Mathematics and Art
([1] and www.arpam.free.fr, primarily consists of small buildings callefibllies, which are
approximately the size of a private house, and wisbsipes are tightly bound with mathematics. They
illustrate mathematical concepts and facts fromistéotical viewpoint in the following sense : each
folly being linked with the start of a new matheioak theory, the follies are laid out in an
approximate historical order. The way in which arist should visit the park is thus bound with the
history of mathematics. The main scope of the ptdgeto help foster a rapprochement of the general
public with mathematics. However, the project miglso be of some interest in architecture when it
offers new shapes and new subjects of decoration.

Most mathematicians are familiar with the shapes the ideas behind the decoration of the
follies. But that is not at all the case for thengel public who may find them quite unusual. The
oddity of these shapes and decorations, and ofiein beauty, are thus expected to be a source of
attraction for the general public. Through thesmeimives and experiences, the public will be able t
get in touch with the essential natural data thstify the interest of mathematics, and lie atoist.

The concept of stability could be the most impdrtamversal concept in natural science. An
intelligence as keen as Plato’s did not ignorl d@ppears in his natural philosophy when Diotiragss
in the Banquet that “the mortal nature always fri@s much as it can, to reach perpetuity and
immortality”, an aim that has been generalized pyn&za who said that “any thing ... always remains
steadfast in one’s state”. This meta-physical motiakes many faces and indeed underlies all
mathematical activities.

The follies | have presented until now are maifipked with the static aspects of
mathematics. Static states can be understood dm#hetable stages of evolutions. These evolstion
can be very fast or very slow according to the terapscale of observation. The fact is that they
underlie the birth, morphology, and activities df @jects in Nature. Any attempt at popularizing
mathematics cannot forget to exhibit the analy$ithe incarnation of movement into the physical
world made by mathematicians. This analysis hasrgiise to the extremelynportant cinematic and
dynamical theories that are present witiie mathematical world.

The history of these theories begins with Galdea Newton. From that time until Poincaré,
efficient mathematical tools were developed to eragte analysis of motion : series, differentiadl an



partial differential calculus. While these toolsitve a geometrical substratum, it is usually hidide
contemporary teaching. Thus, these tools seem tmabed only on numerical laws and algorithms.
Until Poincaré, during the second half of the edginth century, there was no general geometrical
theory directed to the study of motion which wakdb show and to classify the various behaviours
of the trajectories characterizing the differennilees of motions. Poincaré introduced such a theor
and began to study it, at first when the motion ea2-dimensional surfaces.

The purpose of the folly titled tHeoincarésurprises that has not been described before, is to
visualize some of the main concepts mainly throtigh exhibition of suitable families of physical
trajectories.

The realization of this folly is linked with mangechnical problems that need only be
described if the construction of this folly is effwely considered, and that is not the case fer th
present. Thus I shall only give here a short gémscription of this project.

2. Conceptual and Physical Background of the Folly

The folly is built around the concepts of movemand stability, and some of their main by-products.
Two of them are particularly significant :

a) Singularity : a singularity can be viewed as an object whiak the highest stability. With
respect to time, this high stability insures someariance, some fixity. It can be characterized
by high values of some of the parameters by whicis icharacterized. In such a way, a
singularity of a given type usually has the impottaroperty to organize the space around it
in a specific manner. For example, think of a mlest of an association or a state : with
respect to the power of a person in an assemblpcbepies a singular position, the highest,
and models his administration. Singularities are ranot many people in a country have been
elected as president of the state. A cathedralverysingular building among many others in
a city. More generally, very beautiful objects,niaigs, jewels, sculptures are rare, precious,
and these qualities are attached to their sindgylari
Mathematical examples of basic singularities affisen hydrodynamic and geographic
analogies : rivers are analogous to trajectoried,singular trajectories which are reduced to
points, are called sources, sinks, and saddle gdiie meaning of the terms source and sink
is clear : from a source, rivers or trajectorieegout, while they end their lives at a sink. A
saddle point has both the properties of a sourcktla@ properties of a sink : the river or
trajectory may be first directed to that point whiacts as a sink, but then, approaching the
saddle-point which acts now as a source, it is lleghdowards another direction. These
singularities will be illustrated by the set of lmssand fountains surrounding the main body of
the folly (see the paragrafd).

b) Bifurcation : bifurcations occur immediately after a more asd partial transitory
destabilisation and destruction. An object whiclo@sing its previous properties is of course
close to disappearing : its stability can be veny.| The object is then in a very transient
unstable state which is also singular, but for ifpaeasons to the ones stated in the previous
paragraph. When the object does not vanish and ghess up this dramatic situation, it
recovers a new stable state which can evolves. Adws state is defined by some quite new
values of the parameters which characterize the sfahe object. The term bifurcation refers
to these very fast and important changes of théseacteristic properties of the object.
Classically, in physics, the fast changes of phasssfrom the liquid state to vapour state, is
the paradigm of the bifurcation process. Metamosghaan also be understood as a
bifurcation process. The evolution of societiegagg with revolutions and some wars which
look very short respect to the historical time edh societies may be considered as singular
during these periods, after which they keep orr gnlution in new ways.



More generally, a bifurcation means a change irchiagacteristics of a singularity, which may
unfold in several determined ways, when it is airse under a complete control.

Let us introduce here first some classical examptasathematical bifurcations that will be
exhibited in the folly.

Invariant subspaces with respect to a paramekertitne or any other physical attribute, are of
course the most stable parts of space with resigedhis parameter. Punctual singularities are
singularities in the family of general invarianbspaces.

These punctual singularities belong to an importut-family of frequently encountered
invariant subspaces callégki. A point is also called a toru of zero dimension. A circle, that can
be seen as an invariant trajectory, is a one-dimeaktorusT; : such a circle represents a periodic
movement ; the length of the circle can repredemiength of time at the end of which the objeds ge
again its initial position or state. If the radinfsthe circleT, vanishes with the time, the final result of
this shrinking is the poinT, : in that case, the periodicity of the movemennidl. Conversely,
through a bifurcation process, the singulafitynayunfoldinto a circleT;.
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Through this bifurcationTo unfolds intoT: Through this bifurcationT: unfolds intoT'1 andT” 1

Figure 1 : Two theoretical bifurcation processes

When, in its turn, each point of this circle unflidto a circle, then we get the ordinary torus
T,. Inductively, the unfolding of the points ®f,; gives rise to the n-torug, which is a representation
of complex periodic movements. But from the cirde, other bifurcation process may happen,
giving birth to two circleg’;andT" 1.

The bifurcationT, towards T; means the transformation from a steady state persdic
behaviour. It frequently bears the nameHaipf’ bifurcation It plays an important role in the birth of
the “Bénard cells and rolls”. Take a liquid betwdaam horizontal plates, and heat the lower one.
When the temperature reaches a critical value,alrserves that the space between the two plates
divides into cells, and inside each cell, the lijmoves along a closed line as the one of a achn
ellipse.
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Figure 2 : Bénard cells and rolls




Bifurcations induce changes in the behaviour géttaries. In the extreme cases, they may be
changed for instance into Cantor sets of singubémtp, which globally can be stable. They may also
be very unstable giving rise to a turbulent behawio

Some Cantor sets in the plane can be representegdarent arcs of curves : in fact, if we
were able to have an infinite zoom, we should bag these arcs are made of an infinity of distinct
points, so that there is always empty space betaagriwo points. The first algorithm to construct a
Cantor set, the middle thirds Cantorset, has beéengdoy Cantor himself. This algorithm, all the
algorithms created for this purpose as well, hadinite end. Thus, the use of exact algorithms can
exhibit but approximations of Cantor sets, as tilWing one | am indebted to Mike Fiéld “My
idea originally was to do a cone on the middled®iCantor set. | played with things a bit and dedid
that mapping the Cantor set linearly onto the &i[7Pi/4] and forming the cone could give a nice
representation”. See :

http://nothung.math.uh.edu/~mike/cantor.tif

Figure 3 : Part of the cone on the original Cantor set

Since several terms of dynamical systems theoryedoom situations observed on the surface
of the earth, the conception of this folly is baseda reproduction of some of the most significant
geographical situations in a flexible way, throyagtysical models of the water flows. These situaion
will allow to illustrate the terminology used by thamaticians, a few facts as well. Simulationshef t
behaviour of these fluids are being made by Stefarck from the University of Dortmund
<http://www.mathematik.uni-dortmund.de/htmldatalifieav/>.

3. Short Description of the Main Body of the Folly

3.1 The central ring. The main building has a rotating axis of symmetviich is inside an optimal
designed column [2]. On the ground, inside thedd, in principle, it moves a cylinder which iseth
inner vertical border of a basin having the shape dng. This basin will be named ttRoincaré-
Birkhoff ring.

Its outer vertical border (radius 180 cm) shouldidraing in the opposite sense of the inner
cylinder (radius 60 cm) : then, by friction and idlapity, the water in the basin, close to the basdof
the cylinder, is moved in opposite directions. Fribmme to time, a fluorescent jet of water comes out
tangentially to each cylinder ; for instance, tine @oming out from the inner cylinder is red, whiie
one coming out from the outer cylinder is greenfdct, here, the basin will be fixed, and the water
will be put in movement by the actions of the jefscording to the speeds of the borders, or
equivalently to the power of the jets, differenhheours of strings of water will be observed along
the circled located in the middle of the ring

1| thank him also for having greatly improved fheglish of this article - under the right pressof¢he referee!



—

Figure 4 : ThePoincaréBirkhoff ring

In particular, we get a physical illustration ofr@orem proved by G. Birkhoff that there exists
an invariant trajectory in the middle of the bas#ereafter are theoretical illustrations of two fibke
observations : the spectator will attend to theéhbaf invariant flow, here coloured orange, in the
middle of the basin.
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Figure 5 : lllustration of some theoretically observed flows

3.2 The roof. It has two parts : a fixed part and a moving pait flve the fixed part. The rotating
axis makes moving the upper part of the roof whgchke a wheel. It is transparent, so that one can
observe fluids which are flowing between the twotgaThese fluids, which can be coloured, are
pumped and are coming up inside the axis which atée as a pipe. They are sent under pressure
between the moving and the fixed roofs.

The water goes off along the border of the ram{cept above the entrance. First there will be
a gutter to collect water when it is raining, blgoathe liquids between the two roofs will not reac
this part, called the “blind sector”, being stopgda kind of fixed barrier inserted on the fixewf.

ENTRANCE

Figure 6 : No fluid in the blind (hatched) sector



The radius of the moving roof should be around @&0) the angle of the blind sector is 60
degrees which gives a protected part for the ecgérabout 470 cm long.

Through a system of small balls, the moving rodfsrapon the fixed roof. The speed of
rotation can be changed. The distance from thelfreef to the moving roof is around 10 mm at 30
cm from the mathematical axis of rotation. Thidatiee is around 2 mm along the border of the roof.
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Rolling balls arolling ball

Figure 7 : Principle of the rolling system
There are many ways to fix up the rolling systerhich will have a great impact on the sight
given by the evolution of the trajectories. Theihamtal axis of the rolling balls is supposed tollsen
large ; they have to be shaped according to thdir.r

Here is a tableau giving a possible arrangemetiteofolling balls :

radius in cm number of rolling balls angle (degjdesween two
consecutive balls

30 4 90
90 8 45
150 12 30
210 24 15
270 24 15
330 30 12
390 40 9

450 50 7.5

Figure 8 : Positions of the rolling balls on the first threeotes of the moving roof



Being located above the building, we can thus afestdre surprising coloured trajectories on
the roofs of the building. All the bifurcations pesses described before will appear. They will vary
with the pressure of the fluids, the speed of rotadf the upper roof, the exterior temperature ted
climatic conditions. Falling down, the water makeskind of crystalline bright curtain around the
building.

3.3 This water falls down in some basins surroundimggrhain body of the building. One may imagine
these basins as the little chapels forming the tewforts of a cathedral.

The sources are located at the highest placessotemstruction. Coloured water can spring
from them. From time to time jets of water like geks are springing up. Saddle-points mark thedimit
of the influence of these sources. Sinks collestthter.

saddle-points

torusleeated in the
middl bas

Figure 9 : General disposition of the complete folly

3.4 A 2-torus is placed before the entrance, in alsbaain. There is a source at its top. We expeitt th
the properties of capillarity will allow the liggiito cover all the surface in order to exhibit tlsial
singularities of the flow on the torus which arénped out on the following drawing.

Figure 10 : The stable flow on the 2-torud (s sourceD is a sink, whilésSand S’ are saddle-points)



4.4

4. Other Indications for the Decoration

4.1 Inside the folly, animations, physical and chemidaVices, which haveow become rather
classical, will show bifurcation processes and thaoehaviours. Simulations of the movement of
waves will also appear on some screens ; this memeis bound with the theory of solitons which do
have the stability property (for example [3] and #xhibition :
http://rsp.math.brandeis.edu/3D-XplorMath/TopL egellery.html(pseudo-spherical surfaces)).

4.2 Decoration will show fixed or animated sequences@hputed trajectories and phase-portraits.
They can give rise to beautiful pictures. For ins& look at some works by Tim Stilson :
http://www-ccrma.stanford.edu/~stilti/images/chaoéttractors/nav.html

4.3 The outline of the main body of the folly is a paftthe hyperboloid of one sheet. This ruled
surface is commonly used in architecture to makeater-tower. Its outside will be tiled with
imitations of very large quartz crystals : theylwdflect and diffract the light coming from projecs
located around the main body of the folly. Thesgqutors will also illuminate the bright curtain of
fluids falling down from the roof.

Finally, above the central fixed part of the roof, a sculptwill symbolize the miracle of stability
through an unfolding of a singularity. This sculgwvill be a kind of flower with three leaves. Each
leaf is viewed as a deformation of a half parthaf YWhitney umbrella.
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